
NASA USRP – Internship Final Report

Marshall Space Flight Center 1 8/5/11

Quadrocopter Control Design and Flight Operation

Katherine Karwoski
1

Massachusetts Institute of Technology, Cambridge, MA, 02139

A limiting factor in control system design and analysis for spacecraft is the inability to

physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly

and take much preparation. As such, EV41 recently acquired a small research quadrocopter

that has the ability to be a test bed for new control systems. This project focused on learning

how to operate, fly, and maintain the quadrocopter, as well as developing and testing

protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the

design and analysis of simple control systems for the quadrocopter. Software provided by

the manufacturer enabled testing of the Simulink control system on the vehicle.

Nomenclature

x = state vector (n x 1 vector)

ν = input vector (m x 1 vector)

f(x) = nonlinear function of the system states (n x 1 vector)

G(x) = nonlinear function of the system states (m x n matrix)

ϕ = bank (roll) angle (rad)

θ = pitch angle (rad)

ψ = azimuth (yaw) angle (rad)

Kp = proportional gain

Kd = derivative gain

Ki = integral gain

I. Introduction

or spacecraft design, an important and often complex component is the control system, which keeps the vehicle

on track and adjusts for unforeseen variations. However, spacecraft are expensive to test and take significant

time to set up. With the continuing advances in control theory, it is helpful to be able to test the new algorithms, and

while computer software has good simulation capabilities, the lessons learned from real-world testing can be

invaluable.

 Recently, small air vehicles have gained great capabilities and have become suitable for research purposes. One

example is the line of quadrocopters from Ascending Technologies (AscTec), which provide a small, lightweight,

and relatively inexpensive platform to test control programs on. A quadrocopter is an air vehicle that is lifted and

controlled by four rotors. With the onboard microprocessors, they are powerful machines and can be used to quickly

and easily perform tests.

The control systems design and analysis branch (EV41) at Marshall Space Flight Center (MSFC) recently

purchased an AscTec Hummingbird quadrocopter. The main purpose of this project was to set up the system once it

arrived. This included establishing protocol and areas for its use and learning how the hardware and software

operated. In conjunction with this task, this project also designed a model and simple controller in Simulink.

II. Quadrocopter Setup

A. AscTec Hummingbird

 The quadrocopter is an AscTec Hummingbird. Table 1 lists many of the technical details of the

quadrocopter
1
. The frame is made out of balsa wood and carbon fiber

2
, making it strong and lightweight. For

sensors, the copter has a pressure sensor, an acceleration sensor, and three gyroscopes (one for each axis). It also

has a three-axis compass and a GPS unit. All the sensors besides the GPS compose the Inertial Measurement Unit

(IMU). The AutoPilot circuit board has two microcontrollers—a low level processor (LLP) and a high level

1
 Summer Intern, EV41- Control Systems Design and Analysis, Marshall Space Flight Center, MIT

F

NASA USRP – Internship Final Report

Marshall Space Flight Center 2 8/5/11

processor (HLP). The LLP compiles the IMU data, sends commands to the motor controllers, and also has the basic

attitude controller that comes with the quadrocopter. The HLP controls the GPS, but is mostly free as a space for the

user-defined programs.

 The quadrocopter is controlled

solely by motor speeds. As shown in

Fig. 1, the front and rear propellers spin

clockwise and the left and right motors

spin counterclockwise. In this way, all

three axes can be controlled through

changing the rotation speeds. Roll is

controlled by manipulating the speeds

of the right and left motors; pitch is

similarly controlled by the front and

rear motors. Yaw is controlled by a

combination of all four motors by

speeding up the motors spinning in one

direction and slowing the ones spinning

the other way. This turns the

quadrocopter by causing a change in

angular momentum, but it does not

affect the pitch and roll axes.

 For safety, the quadrocopter was ordered with propeller protection, which connects to the arms of the

quadrocopter and consists of lightweight corner pieces connected by carbon tubes.

Figure 2. Quadrocopter in Flight. This image is of the vehicle with the propeller

protection on, during indoor flight.

Table 1. Technical Details of the Quadrocopter.
1

Model AscTec Hummingbird with AutoPilot

Manufacturer Ascending Technologies GmbH

Battery 2100 mAh LiPo

Takeoff weight 480 g

Distance between motors 34 cm

Propeller 8‖ flexible standard propellers

Motors AscTec X-BL 52s with X-BLDC controllers

Radio controller Futaba FAAST 2.4 GHz

Telemetry system Xbee 2.4 GHz

Figure 1. AscTec Hummingbird Quadrocopter.
1
 This image is of a

standard Hummingbird Quadrocopter. The arrows show the rotation

direction of the propellers, with the front and rear spinning clockwise and

the left and right spinning counter clockwise.

NASA USRP – Internship Final Report

Marshall Space Flight Center 3 8/5/11

B. Indoor Flight Environment

The quadrocopter will be mainly used in an indoor environment. To protect people, property, and the

quadrocopter, it was decided that there should be a caged area that is designated as controlled flying space. Initially,

there were two planned spaces, one in the cubicle and one in a spare file room. Both were built of PVC pipe, with

netting and padding.

The smaller space took up a corner of the cubicle and was built to be partially on the desk with the rest of the

area extending the full distance to the floor. The idea of this space was to be for quick testing of sensor data

readings. The first flights of the quadrocopter were in this space, but it was quickly determined that the quadrocopter

was noisy enough to be a bother in the office and this space was dismantled.

The larger space is a 10’x10’x8.5’ cube in a spare file room. This area is made of 1.25‖ PVC pipe, with wood

supports on the corners and foam padding on the structure. Baseball netting covers the whole structure, stretched

taught to be able to catch and contain the quadrocopter; the floor is covered with pillows, which were the cheapest

and softest material to act as padding. A great feature of the quadrocopter is the soft propellers, as they do not cut

through the netting or pillows when they make contact. When impacting the netting, the propellers become caught,

stopping the quadrocopter. The cage was designed such that it can be dismantled and moved if necessary.

Figure 5. The Effectiveness of the Cage. After hitting the net, the

quadrocopter is stuck, effectively stopping it.

Figure 4. Quadrocopter Cage. This image shows the

completed large flying area, with the pillows and

netting.

Figure 3. Small Flying Area. This image shows the

quadrocopter inside the small flying area, before it was

dismantled.

NASA USRP – Internship Final Report

Marshall Space Flight Center 4 8/5/11

Figure 6. Radio Controller

2
. Using the

Futaba 7-channel transmitter, the

quadrocopter can be controlled in all

three axes, with throttle and mode control

as well.

C. Mode Testing

The quadrocopter comes with three different modes of operation: manual, height control, and GPS. Height

control and GPS are intended for outdoor use, so the industrial safety department cleared the quadrocopter to fly in

an outdoor location, on the softball field at MSFC. The grass there was short and soft, making it a good location.

While outdoors, all modes were tested, as well as maneuvering capability, full speed, and range.

1. Manual Control

The majority of time was spent in this mode, in which the pilot

controls all aspects of the quadrocopter through the controller and

it flies much like a normal RC aircraft. For safety reasons, a pilot

must learn to fly in manually before using any of the other modes.

2. Height Control

AscTec recommends that this mode is only used outside. In this

mode, the throttle commands an ascend/descend rate instead of

thrust, and when the stick is centered, the quadrocopter will stay at

a constant height.

3. GPS Mode

This mode can only be used outside, as the GPS unit needs a clear

view of the sky to work. Height control is enabled, the system uses

the GPS to hold position, and roll/pitch/yaw maneuvers are speed

controlled to 2 m/s. The user can send waypoint commands from

the computer to the quadrocopter. By sending a list of points to

visit (waypoints), a path is created for the quadrocopter to follow.

III. Control Design

A parallel part of this project was to do control work with a computer model of the quadrocopter. Control design

seeks to make a system respond as precisely as possible to a given input, regardless of dynamics or disturbances. A

control system uses sensors to measure the state of the plant (the process being controlled), determines the

difference between the measured and desired values, and adjusts the plant accordingly with actuators
3
. In this case,

the plant is the quadrocopter and the actuators are the motors and propellers.

A. Quadrocopter Model

 Before any control design can be done in simulation, the plant must be modeled. A common form of modeling a

plant is through a state-space model, which takes the differential equations defining the system and puts them in a

matrix format that can be used to better manipulate the system
4
. State-space models are traditionally represented as

BuAxx  and DuCxy  (Ref. 4), but this representation is only applicable to linear systems. When a plant

is non-linear the representation changes to )()(xGxfx (Ref. 1). Below is the non-linear state-space

representation of the quadrocopter plant
1
. In this model,  Tx   . A more thorough explanation and

derivation of this model can be found in Ref 1. The control systems were all formed and tested around a Simulink
5

version of this model.















































































































3

2

1

3

1

3

1

11

3131

364

3

42

6

362

4

3

64
342

2

6

5

4

3

2

1

cos

cos

cos

sin
0

000

sincos0

000

tancostansin1

000

tan
cos

1

cos

cos
tan







x

x

x

x

xx

xxxx

xxx
x

xx

x

xxx

x

x

xx
xxx

x

x

x

x

x

x

x







































































5

3

1

3

2

1

x

x

x

y

y

y

y
 (1)

NASA USRP – Internship Final Report

Marshall Space Flight Center 5 8/5/11

The state-space model represented by Eqs. (1) were

formulated into the Simulink model in Fig. 7. In the

following models, R2011a edition of

Matlab/Simulink was used. Figure 8 is the upper

level of the Simulink program in which the control

programs were run. The model in Fig. 7 is the

contents of the Quad Plant block; the control design

was done in the Attitude Control block, and the

contents of the block for each control system are

found in the following section. A constant command

was fed into the system and the data was output into

the Matlab workspace for analysis.

B. PID Control

A common form of control system uses

proportional (P), integral (I), and derivative (D)

components. The proportional component consists of

the difference between the commanded and measured

values (the error). The integral component is the

integral of the error, and the derivative component is

the rate. There are four variations of this, proportional only (P), proportional-derivative (PD), proportional-integral

(PI), and proportional-integral-derivative (PID). Each component has a gain associated with it (Kp, Ki, Kd). By

adjusting the gains of each component, the system response can be tuned.

Controllers are often tested by inputting a step function and analyzing the results. A step function is 0 for time

less than 0 and some value for time greater than 0. In the following graphs, a step input of 10 degrees was used.

There are four major characteristics of closed loop step response that are used as specifications to tune a system, all

related to the steady-state, which is the value the system settles to. Rise time is the time it takes for the output to

reach 90% of the desired value; overshoot is how much the peak is above the steady-state; settling time is the time it

takes to converge to steady-state; and the steady-state error is the difference between steady-state and the desired

value
6
. For this controller, the goals were to have a rise time of less than 0.5 s, an overshoot of less than 10%, a

settling time of less than 1 second, and a steady-state error of less than 1 degree. These specifications were chosen

because they are reasonable expectations for the performance of the quadrocopter. Each gain has a specific effect on

each of these characteristics, summarized in Table 2, so tuning a system is about balancing the effects. When tuning

any kind of PID loop, the first gain to start with is the Kp gain, using it to decrease the rise time to within

specifications. The next step is to use Kd to reduce the overshoot and settling time, but this will increase rise time, so

it is a process of increasing each gain in increments to see the effects. The last step is to tune Ki to eliminate -state

error.

 Figure 9 shows the attitude

control block of a proportional

controller. There is no rate input as

seen in Fig. 8, and the thrust

command (the 4
th

 value of the given

command vector) is not used in this

model. The block Flip is from the

Simulink software that was purchased

with the quadrocopter
7
 and accounts

for the full-circle nature of the yaw axis.

Table 2. Effects of PID gains on Response Characteristics
6

 Rise time Overshoot Settling time Steady-state error

Kp Decrease Increase Small Change Decrease

Kd Small Change Decrease Decrease Small Change

Ki Decrease Increase Increase Eliminate

Figure 8. Quadrocopter Control System. The control

design is done in the attitude control block, based on the

plant’s response to a given command.

att

To Workspace

Scope

nu

x_attitude

x_rate

Quad Plant

-C-

Command

Remote_CMD

Attitude

rate

nu

Attitude Control

Figure 9. Proportional Control Loop. This is the attitude block for a

simple proportional controller.

error
1

nu

Selector

Kp

Gain1Angle_+-4pi Angle_flip_+-pi

Flip

2

Att-Sense

1

Remote_CMD

Figure 7. Quadrocopter plant model. Using Eqs. (1), this

Simulink diagram was created as a plant model for control

design.

2

x_rate

1

x_attitude

Interpreted

MATLAB Fcn

f(x)

Selector1

Selector

Matrix

Multiply

Product

1

s

Integrator

Interpreted

MATLAB Fcn

G(x)

Add

1

nu

NASA USRP – Internship Final Report

Marshall Space Flight Center 6 8/5/11

 Figure 10 is the output of simulating the model with the

control loop in Fig. 9, using varying values of Kp. Only the

phi (roll) axis was used for the purpose of testing the

controllers. All the following PID testing graphs use the

same settings unless otherwise noted. The black marks on

the graph indicate the command input of 10 degrees and the

tuning goals. The mark at (0.5,9) indicates the rise time goal,

the middle line indicates the commanded angle, and the lines

above and below mark the overshoot and steady-state

parameters, respectively. When Kp equals 10, the model

meets the rise time goal.

The next step in control design is to add a derivative, or

rate, component to the control system. Figure 11 shows the

attitude control with PD design. The attitude loop block is

nearly identical to Fig. 3, and the rate feedback is multiplied

by Kd and subtracted from the result of the proportional

component.

Kp=10 produced the desired rise time, so the PD

model ran with Kp=10 and varying Kd values, as seen in

Fig. 12. Kd=4 brings the model within the desired

overshoot limit, but increases the rise time, so Kp must

be increased to compensate. Figure 13 shows the model

with various values of Kp and Kd, with Kp=25 and Kd=6

bringing the model into accordance with the desired

performance for both rise time and overshoot.

Proportional Integral

control is also a common

control system design; Fig.

14 shows a PI attitude control

design. There is no rate

component; instead, the error

is integrated and multiplied

by Ki and then subtracted

from the proportional control

component.

Figure 12. Proportional-Derivative Control. A

simulation of the model with a PD controller, with

Kp=10 as found above.

0 1 2 3
0

2

4

6

8

10

12

14
Proportional-Derivative Control

time, s

a
n

g
le

,
d

e
g

Kd=1, Kp=10

Kd=3, Kp=10

Kd=4, Kp=10

Kd=5, Kp=10

Figure 11. Proportional-Derivative Control Loop.

This is the attitude control block for a PD controller,

with a P controller in the attitude loop block and a

rate component outside of it.

1

nu

Kd

Gain

Sense

Attitude_Cmd
cmd_P

Attitude Loop Add

3

rate

2

Attitude

1

Remote_CMD

Figure 10. Proportional Control. A

simulation of the model with just a

proportional controller, with varying values

of Kp.

0 1 2 3 4 5
0

5

10

15

20
Proportional Control

time, s

a
n

g
le

,
d

e
g

Kp=1

Kp=5

Kp=10

Kp=15

Figure 13. Refined PD control. Simulation of the

model with varying Kp and Kd values, with Kd=6

and Kp=25 fitting the overshoot and rise time

specifications.

0 0.5 1 1.5 2
8

9

10

11

12
Proportional-Derivative Control

time, s

a
n

g
le

,
d

e
g

Kd=4, Kp=15

Kd=4, Kp=20

Kd=5, Kp=20

Kd=6, Kp=25

Figure 14. Proportional-Integral Control Loop. This is the contents of the attitude

control block for a PI controller.

error
1

nu

Selector

1

s

Integrator

Kp

Gain1

Ki

Gain

Angle_+-4pi Angle_flip_+-pi

Flip

Add

2

Att-Sense

1

Remote_CMD

NASA USRP – Internship Final Report

Marshall Space Flight Center 7 8/5/11

As seen in Fig. 15, simulating the model with a PI

controller was an ineffective control solution. The integral

component did not solve the oscillations in the system. Low

Ki values decreased the oscillations, but increasing the value

led to integrator windup, resulting in a drop to negative

infinity. Changing the Kp value with the same Ki value also

did not have a desirable effect.

Despite the results of the PI controller, for the sake of

completeness, a PID controller was also tested on the system.

Figure 16 compares PD controller with Kd=6 and Kp=25

with similar PID controllers. The PID controllers reduce the

overshoot slightly, but they also induce a steady-state error,

which is not a problem with the PD controller, so a PID

controller is not necessary. However, the Kd=6 and Kp=25

controller meets only three of the design specifications, as the

settling time is greater than 1. It is also possible to improve

the performance on the other specifications, so new

specifications were selected.

 As using higher gains for Kp and Kd leads to better a better

system response, new parameters were selected and gains tested

to fit the new specifications, which were rise time less than 0.25

s, overshoot less than 1%, settling time less than 1 s and no

steady-state error. Figure 17 shows a few comparisons for these

parameters. Kp=225 and Kd=25 fulfilled these specifications. It

is worth noting that these gains happen to be close to the gains

used in part of the first control system in Ref. 1, but are not exact

due to the complexity of the system used in that work.

 Next, even higher gains were tested. The results were that

system performance could be brought to less than 0.02 s rise

time, no overshoot, no steady-state error and settling time less

than 0.04 s. However, while the gains tested in these simulations

produced good performance, such large gains compromise

robustness and may be limited by the fixed-point nature of the

quadrocopter microprocessors. Fixed-point numbers have less

precision and a limited range of values as compared to some of

the other common number types, such as single and double.

Figure 15. Proportional-Integral Control. Simulation

of the model with varying Kp and Ki values.

0 1 2 3 4 5
0

5

10

15

20
Proportional-Integral Control

time, s

a
n

g
le

,
d

e
g

Ki=1,Kp=10

Ki=5,Kp=10

Ki=5,Kp=8

Ki=5,Kp=12

Ki=7,Kp=10

Figure 16. PID Control. Simulation of the model with

proportional, integral, and derivative control components.

0 0.5 1 1.5 2 2.5
6

7

8

9

10

11

PID Control

time, s

a
n

g
le

,
d

e
g

Kp=25,Kd=6

Kp=25,Kd=6,Ki=1

Kp=25,Kd=7,Ki=1

Figure 17. Further PD Testing. This figure shows using

higher gains to further refine the system response.

0 0.2 0.4 0.6 0.8 1

9

9.5

10

10.5
Proportional-Derivative Control

time, s

a
n
g
le

,
d
e
g

Kp=100, Kd=14

Kp=140, Kd=18

Kp=150, Kd=20

Kp=225, Kd=25

Figure 18. High Gain Testing. These simulations were

run to test very large gains.

0 0.02 0.04 0.06 0.08

9

9.2

9.4

9.6

9.8

10

Proportional-Derivative Control

time, s

a
n
g
le

,
d
e
g

Kp=5x104, Kd=4x102

Kp=1x105, Kd=6x102

Kp=5x105, Kd=1x103

Kp=5x105, Kd=1.5x103

NASA USRP – Internship Final Report

Marshall Space Flight Center 8 8/5/11

Figure 20. Onboard_Matlab_Controller

7
. This model shows the contents of the subsystem

Onboard_Matlab_Controller from Fig. 19. This is where the user control program would go.

To be continued until parameter 40...

1

RPM_CMD

OutputSwitch

IMU

Remote_CMD

Uart

Debug -> to ground ctrl

rot cmd

Thrust

Out

Control Allocation

uart_up_p_09

Constant9

uart_up_p_02

Constant2

uart_up_p_10

Constant10

uart_up_p_01

Constant1

IMU

Remote_CMD

Out

Command Filter

IMU

Remote_CMD

Out

Attitude Control

4

UART_CMD

3

Remote_CMD

2

GPS_Data

1

IMU_Data

RPM_CMD_lef t

RPM_CMD_rear

RPM_CMD_right

RPM_CMD_f ront

<uart_ctrl_10><uart_ctrl_10>

IV. Flight Operation

The remaining part of this project was to combine the hardware and software. One of the powerful features of

the AscTec Hummingbird is the ability to have user-loaded code on the HLP. In the long run, the main purpose of

the quadrocopter is as a test bed for custom code, so it was important to set up that part of the system. This involved

installing and learning software and model from the manufacturer, and receiving data back from the quadrocopter.

A. AscTec Model

The quadrocopter was purchased with a Simulink interface software package. This AscTec SDK
7
 (Software

Development Kit) included a Simulink model that, when converted to C code, is loaded onto the microprocessor

using Eclipse software. The SDK also included a model to receive data back from the quadrocopter, as well as many

supporting files.

The model shown in Fig. 19 gives an overview of the code framework that runs on the quadrocopter. This model

was designed for the R2010b edition of Matlab and was mainly run in that version, but work has been initiated to

convert it to R2011b. Data from the IMU, GPS, RC controller, and UART (Universal Asynchronous Receiver

Transmitter, a communication interface
1
) are input and can be used as needed. Coding is done in the block

Onboard_Matlab_Control, shown in Fig. 20. This block can be modified as needed (or replaced completely) by the

user’s program. The block Attitude Control contains a similar control system to the ones discussed in the PID

control section. The framework model can incorporate parameters that can be sent to the quadrocopter and has many

debugging channels and customizable options. Using Real Time Workshop (now called Simulink Coder), this model

can be translated into C code. Using the Eclipse software and settings that came with the AscTec SDK, as well as

the JTAG adapter (Joint Test Action Group, a programming interface hardware
1
), the code can be sent to the

quadrocopter and debugged.

Figure 19. Simulink Quadrocopter Framework

7
. This Simulink block diagram is the top level structure of the

Simulink Quadrocopter Framework that was purchased with the quadrocopter.

2

UART_Data_Out

1

RPM_CMD_Out

In Uart_Ctrl

Signal_Mapping_UART

In Imu_Data

Signal_Mapping_IMU

In GPS_Data

Signal_Mapping_GPS

In CMD

Signal_Mapping_CMDs
UART_Data

Output_Mapping_Debug

u RPM_CMD

Output_Mapping_CMD

IMU_Data

GPS_Data

Remote_CMD

UART_CMD

RPM_CMD

Onboard_Matlab_Controller

4

UART_Data_In

3

RC_Data_In

2

GPS_Data_In

1

IMU_Data_In

NASA USRP – Internship Final Report

Marshall Space Flight Center 9 8/5/11

Figure 21. Xbee-Quadrocopter Interface

7
. This model uses the Xbees to interface with the quadrocopter, sending commands

and displaying the data.

CPU-Load

Supply Voltage

Real-time

Clock

u

Quad_Send

y

Status

Quad_Receive

Debug_Channels Quad_Data

Debug_Mapping_Extended

int16

(SI)

0

0

0

0

0

0

0

0

0

0

In

Attitude Control

double
double

double double

double

double

double

double

double

double

double

double

double

double

double

After initialization and transmission of parameters, the quadrocopter is ready to fly. The quadrocopter uses two

wireless communication devices called Xbees. It can be used with one or two, but this system is set up with two, one

for transmitting and one for receiving, enabling faster data transfer. The model in Fig. 21 shows the Simulink

interface model that can send control channels and receive data from the quadrocopter.

The blocks Quad_Receive and Quad_Send contain C code s-functions to interface with the Xbee hardware. The

constant blocks connected to the Quad_Send block are the commands sent to the quadrocopter. Their function can

be customized in the framework model. The data coming back from the quadrocopter can also be partially

customized in the framework. There are 60 debug channels to choose from, but only 20 channels are sent back to the

computer at a time, with a rate of 50 Hz. The first block of ten is transmitted every cycle, including the IMU attitude

and rotation, as well as the commanded values from the attitude control loop. The second block of ten is chosen

from the remaining five blocks; it can be the same channels every time or it can loop through the blocks of channels

as defined by the user. A signal was sent via a control channel and successfully received by a debug channel.

The setup in Fig. 21 displays the CPU load and battery voltage in the model. In the Attitude Control block, there

are also scopes displaying the IMU data for attitude and rate, the commanded rates from the attitude control

algorithm on the copter, the stick commands, and the resulting motor commands. This section was modified to

output the data into Matlab for further analysis.

B. Quadrocopter Data

When flying the quadrocopter, the computer was set up to collect data, which was then analyzed in Matlab. In

Fig. 22, the stick input and the response from the attitude loop are compared. Because the stick input is from -1 to 1

and has no real units, it was scaled to be displayed with the attitude loop data. The quadrocopter was purposefully

flown in such a manner as to produce the regular oscillations shown. Figure 23, from a different dataset, displays the

reaction of the quadrocopter to the given input. The data is from normal flight, so there is no pattern to it. The

quadrocopter rotation readings follow the attitude loop input with minor lag, but there is a lot of noise in the signal,

whether it is from the sensor or the actual movement of the quadrocopter.

Figure 22. Attitude Loop Response. This figure

compares the scaled input of the stick on the

remote control to the commanded rate from the

attitude loop.

9 10 11 12 13
-300

-200

-100

0

100

200
Attitude Loop Response

time, s

ro
ta

ti
o

n
,
d

e
g

/s

Stick Input

Attitude Loop

Figure 23. Quadrocopter Reaction. This figure

compares the commanded rotation from the attitude

loop with the IMU rotation data.

10 11 12 13 14 15
-40

-20

0

20

40

60
Quadrocopter Reaction

time, s

ro
ta

ti
o

n
,
d

e
g

/s

Quadrocopter Rotation

Attitude Loop

NASA USRP – Internship Final Report

Marshall Space Flight Center 10 8/5/11

The data in Fig. 24 compares the commanded thrust value

with the response of the motors. The thrust was taken up to

maximum and then brought back down, during which the

motors follow the signal with a varying degree of

accuracy. When the thrust signal increased, the motor

commands deviated, whereas at low thrust values, the

motors followed the signal closely. As the thrust is scaled

from -1 to 1 coming from the remote control and has no

physical unit associated with it, it was scaled to the range

of the motor commands. However, the motor commands

are also of an arbitrary unit system, as that command is

subsequently fed into the motor controllers on the

quadrocopter, which take the input and convert it to the

appropriate RPM value for the motor.

In Figs. 25, 26, and 27, the command signal for one

axis was oscillated using the RC controller. The

resulting motor responses were checked to confirm the

response. For the pitch command (Fig. 25), only the

front and rear motors are engaged, with the front having

the opposite value of the rear. For the roll command

(Fig. 26), the right and left motors are engaged. In Fig

27, all four motors are engaged to respond to the yaw

command, as explained earlier. The clockwise spinning

motors (front and rear) are paired, as are the counter-

clockwise motors (left and right), and these pairs

oscillate in an opposite manner. This axis has a

noticeable lag, as opposed to the other two axes. As

pitch and roll both only use two motors, the dynamics

of these axes are similar. As is brought up in Ref 1,

because the yaw axis is controlled by all four motors, it

has different dynamics, causing the different response.

Figure 24. Motor Thrust. This figure compares the

thrust command from the remote control with the

resulting motor commands.

0 5 10 15
0

50

100

150

200

250
Motor Thrust

time, s

M
o

to
r

C
o

m
m

a
n

d
s

Front Motor

Right Motor

Rear Motor

Left Motor

Thrust Command

Figure 25. Motor Response to Pitch Command. By

oscillating the pitch command, the correct motor responses

were confirmed.

13 14 15 16 17 18 19 20
-40

-30

-20

-10

0

10

20

30

40

50
Motor Responses, Pitch Command

time, s

M
o

to
r

C
o

m
m

a
n

d
s

Front Motor

Right Motor

Rear Motor

Left Motor

Stick Input

Figure 26. Motor Response to Roll Command. Confirmation

of the correct motor responses to a roll command.

28 30 32 34 36 38
-40

-30

-20

-10

0

10

20

30

40

50
Motor Responses, Roll Command

time, s

M
o

to
r

C
o

m
m

a
n

d
s

Front Motor

Right Motor

Rear Motor

Left Motor

Stick Input

Figure 27. Motor Response to Yaw Command. As with the

pitch and roll figures, the yaw command was oscillated, but as

yaw has a different dynamic, all four motors engage as expected.

4 6 8 10 12
-20

0

20

40

60

80
Motor Responses, Yaw Command

time, s

M
o

to
r

C
o

m
m

a
n

d
s

Front Motor

Right Motor

Rear Motor

Left Motor

Stick Input

NASA USRP – Internship Final Report

Marshall Space Flight Center 11 8/5/11

C. Control Variations

The model in Fig. 19 is fully customizable, so steps were taken to make modify it in small increments. The first

variation was to put a switch system in place so that one of the control channels in the model in Fig. 21 could be

used to send a thrust command to the quadcopter instead of the RC controller. The second variation tried was to

have the model output the height data from the IMU back to the computer so that it could be analyzed to estimate

how high the quadrocopter could fly when outside. Another variation was to adapt the PD controller model from the

earlier control section back into the model in Fig. 19. This was the most successful variation, as the code was run on

the quadrocopter and parameters were sent to the quadrocopter real-time. However, all of these variations, and other

possibilities, are deserving of more time than could be afforded to them in this project. All of the variations

mentioned were coded into C and run on the quadrocopter, but none of the model variations performed quite as

expected, and much care had to be taken not to disturb any of the important processes in the model when making

changes.

D. Camera Use

Some research and was done into mounting a camera on the quadrocopter and learning to fly it through the first-

person view. A small Bluetooth camera was attached on top of the quadrocopter and a live video feed was received

while flying. A Simulink diagram that overlays a heads-up display (HUD) onto the video feed from the

quadrocopter was also started, but figuring out how to plot data onto such a display proved to be a rather difficult

task to complete in Simulink. Contacting Mathworks about this application produced some ideas, but there was no

time to explore this further.

V. Conclusion and Future Work

Through this project, the quadrocopter system was successfully set up for future use, fulfilling the primary goal.

By establishing a space to fly in and protocol for using the vehicle, others will be able to operate the quadrocopter

easily and safely. Documentation of the processes involved in flying, maintaining, and programming the

quadrocopter will make it easier for people to become involved in the project and keep the project running after this

summer. Through learning to design a simple controller for the quadrocopter, a model has been created for computer

simulation of the quadrocopter, and a PD controller was tested. Perhaps the biggest accomplishment of this project

was the combination of hardware and software—using the AscTec SDK to program and edit code, and then load and

test it on the quadrocopter. Through receiving data back, the system was validated and debugged.

As the purpose of this project was to set up the quadrocopter system for future use, this project has many future

possibilities. A further step for testing GPS control would be to use the waypoint command feature. As for control

design, a more optimal PD controller should be considered, making the best controller within the limitations of the

gains. The controllers should also be verified for all axes and for values close to saturation. More advanced control

algorithms and new control designs should be tested on this vehicle in the future, as that is the purpose for this

quadrocopter. Besides the control design, much more work can be done to customize the framework model and

Xbee model for data input/output from the quadrocopter. The onboard camera and HUD system also bears further

development. One other promising option for using this quadrocopter is navigation. There has been an idea about

using a camera-equipped room to track the quadrocopter for indoor navigation, and/or using an onboard camera for

tracking and navigation. The testing of navigation sensors and algorithms may prove to be the most valuable use of

the quadrocopter. The goal is to get more people involved, and as that happens, more ideas will be brought to the

quadrocopter project. The project is open to exploration of ideas and improvements in control and navigation logic

and is a cost-effective means of testing alternative control programs.

Acknowledgments

I would like to thank the following people:

Mike Hannan for his vision with the quadrocopter, and for his help, mentorship, and guidance.

John Rakoczy, for his mentorship and insight this summer.

Matthew Carter, for his enthusiasm for the project and his help with debugging.

Tannen VanZwieten, for her knowledge, patience, and encouragement when helping me with control theory.

Everyone else at EV41 who helped out and got involved with the project.

Michael Achtelik (Ascending Technologies), for his help in getting this project started, and for providing his

thesis and an initial Simulink model for the quadrocopter.

The NASA USRP program for allowing me to come discover and learn about the opportunities at NASA.

NASA USRP – Internship Final Report

Marshall Space Flight Center 12 8/5/11

References
1Achtelik, M., ―Nonlinear and Adaptive Control of a Quadcopter,‖ Dipl.-Ing. Dissertation, Lehrstuhl für Flugsystemdynamik,

Technische Universität München, Garching, Germany, 2010.

2.―AscTec Hummingbird with AutoPilot User’s Manual.‖ 2011. Ascending Technologies GmbH. 6 July 2011

<http://www.asctec.de/assets/Downloads/Manuals/AscTec-Autopilot-Manual-v10.pdf>

3Avallone, E. A., Baumeister III, T., Sadegh, A. M. (ed.), Mark’s Standard Handbook for Mechanical Engineers, 11th ed.,

McGraw Hill, New York, 2007, Section 16, pp 22, 24.

4Leigh, J. R., Control Theory, The Institution of Electrical Engineers, London, 2004, Chap. 10.

5Matlab & Simulink, Software Packages, Ver. R2010b & R2011a, MathWorks, Natick, MA, 2011.

6PID Tutorial.‖ 1996. The University of Michigan. 14 June 2011 <http://www.engin.umich.edu/group/ctm/PID/PID.html>.

7AscTec SDK & Simulink Quadrocopter Framework, Software Package, Ver. 2011, Ascending Technologies, Germany,

2011.

